Boundedness and blowup for nonlinear degenerate parabolic equations
نویسندگان
چکیده
منابع مشابه
Boundedness and Blowup for Nonlinear Degenerate Parabolic Equations
The author deals with the quasilinear parabolic equation ut = [uα + g(u)]∆u + buα+1+f(u,∇u) with Dirichlet boundary conditions in a bounded domain Ω, where f and g are lower order terms. He shows that, under suitable conditions on f and g, whether the solution is bounded or blows up in a finite time depends only on the first eigenvalue of −∆ in Ω with Dirichlet boundary condition. For some spec...
متن کاملBlowup for Degenerate and Singular Parabolic System with Nonlocal Source
We deal with the blowup properties of the solution to the degenerate and singular parabolic system with nonlocal source and homogeneous Dirichlet boundary conditions. The existence of a unique classical nonnegative solution is established and the sufficient conditions for the solution that exists globally or blows up in finite time are obtained. Furthermore, under certain conditions it is prove...
متن کاملA finite volume scheme for nonlinear degenerate parabolic equations
We propose a second order finite volume scheme for nonlinear degenerate parabolic equations. For some of these models (porous media equation, drift-diffusion system for semiconductors, ...) it has been proved that the transient solution converges to a steady-state when time goes to infinity. The present scheme preserves steady-states and provides a satisfying long-time behavior. Moreover, it re...
متن کاملLarge time behavior for some nonlinear degenerate parabolic equations
We study the asymptotic behavior of Lipschitz continuous solutions of nonlinear degenerate parabolic equations in the periodic setting. Our results apply to a large class of Hamilton-Jacobi-Bellman equations. Defining Σ as the set where the diffusion vanishes, i.e., where the equation is totally degenerate, we obtain the convergence when the equation is uniformly parabolic outside Σ and, on Σ, ...
متن کاملWell-posedness Results for Triply Nonlinear Degenerate Parabolic Equations
We study the well-posedness of triply nonlinear degenerate ellipticparabolic-hyperbolic problem b(u)t − div ã(u, ∇φ(u)) + ψ(u) = f, u|t=0 = u0 in a bounded domain with homogeneous Dirichlet boundary conditions. The nonlinearities b, φ and ψ are supposed to be continuous non-decreasing, and the nonlinearity ã falls within the Leray-Lions framework. Some restrictions are imposed on the dependence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications
سال: 2009
ISSN: 0362-546X
DOI: 10.1016/j.na.2008.01.035